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Abstract 

Mismatched crowdsourcing is a technique to derive speech transcriptions using crowd-

workers unfamiliar with the language being spoken. This technique is especially useful for 

under-resourced languages since it is hard to hire native transcribers. In this paper, we 

demonstrate that using mismatched transcription for adaptation improves performance of 

speech recognition under limited matched training data conditions. We show that using 

previously published methods for training data augmentation improves the utility of 

mismatched transcription. Finally, we show that a mismatched transcription can be used to 

train one neural network in two forms, in two sequential steps: first as a probabilistic 

transcription, and second as the auxiliary task of a multi-task learner.  
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1. Introduction 

Commercial automatic speech recognition (ASR) is available in fewer than one percent of 

the world’s living languages (e.g., www.google.com/intl/en/chrome/demos/speech.html; 

arxiv.org/abs/1412.5567). Almost all academic publications describing ASR in a language 

outside the “one percent” are focused on the same core research problem: the lack of 

transcribed speech training data. Usually, to build a reasonable speech recognition system, 
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tens to hundreds of hours of training data are required, while commercial systems normally 

use thousands of hours of training data. This large resource requirement limits the 

development of a full fledged acoustic model for under-resourced languages. To deal with 

this issue, various methods have been proposed. They are summarized in four categories. 

The first category is based on a universal phone set (Schultz et al., 2011; Vu et al., 2011) 

that is generated by merging phone sets of different languages according to the international 

phonetic alphabet (IPA) scheme. A multilingual acoustic model can therefore be trained for 

all languages using the common phone set.  

In the second category, the idea is to create an acoustic model that can be effectively 

broken down into two parts in which the major part captures language-independent statistics 

and the other part captures language specific statistics. Typical examples in this approach are 

the cross-lingual subspace Gaussian mixture models (SGMMs) (Burget et al., 2011) and 

multilingual DNN (Xu et al., 2015). 

In the third category, the source acoustic model acts as a feature extractor to generate 

cross-lingual features such as source language phone posteriors for the target language speech 

data. As these features are higher-level features as compared to conventional features such as 

MFCCs, they enable the use of simpler models trained with a small amount of training data 

to model the target acoustic space. Several examples of this approach are cross-lingual 

tandem (Stolcke et al., 2006), cross-lingual Kullback-Leibler based HMM (KL-HMM) 

(Imseng et al., 2012), phone mapping (Sim et al., 2008; Do et al., 2013; Do et al., 2014a), 

and exemplar-based models (Sainath et al., 2012; Do et al., 2014b).  

The fourth category is mismatched crowdsourcing which was recently proposed as a 

potential approach to deal with the lack of native transcribers to produce labeled training data 

(Jyothi and Hasegawa-Johnson., 2015a; Jyothi and Hasegawa-Johnson., 2015b; Liu et al., 

2016; Das and Hasegawa-Johnson., 2016; Do et al., 2016; Hasegawa-Johnson et al., 2017). 

In this method, the transcribers do not speak the under-resourced language of interest (target 

language), they write down what they hear in this language as nonsense syllables in their 

native language (source language). These transcriptions are “mismatched” because the source 

and target languages differ. The mismatched transcriptions are then converted by a channel 

decoder into target language transcription in a lattice format called probabilistic transcription 

(PT). PT is then used to adapt existing acoustic models which can either be GMM (Liu et al., 

2016) or DNN (Das and Hasegawa-Johnson., 2016).  

In this paper, we follow the fourth approach where mismatched transcription is used to 

improve performance of under-resourced speech recognition. Specifically, Vietnamese is 

chosen as the under-resourced language, and the mismatched transcription is generated by 

Mandarin speakers. In this study, we assume there is a limited amount of matched 
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transcription in the target language to build monolingual speech recognition systems. First, 

we investigate, whether in this case, mismatched transcription can be used together with 

matched transcription and still be helpful to improve performance. We show that PT 

adaptation can be improved further if we apply data augmentation for the matched training 

data. Second, we introduce a method to use both matched and mismatched transcriptions 

simultaneously in a multi-task learning framework. Finally, we investigate a two-level 

adaptation method that uses PT adaptation to generate alignment for multi-task learning. 

The rest of this paper is organized as follows: Section 2 gives a brief introduction of 

mismatched transcription and its application in speech recognition. Section 3 describes the 

multi-task learning framework. Section 4 presents experimental setup. Experimental results 

are shown in Section 5. Section 6 concludes the paper. 

 

2. Mismatched Transcription for Speech Recognition 

 

Figure 1: Mismatched transcription for speech recognition. 

 

Mismatched crowdsourcing was recently proposed to solve the shortage of native 

transcription in some languages (Jyothi and Hasegawa-Johnson., 2015a; Jyothi and 

Hasegawa-Johnson., 2015b). Figure 1 illustrates the process of generating mismatched 

transcription and how to use it to improve speech recognition. A native speaker of the target 

language (under-resourced language) generates speech in his native language. Independent 

foreign transcribers of resource-rich annotation languages (crowd-workers) listen and write 

down nonsense syllables in the orthography of the annotation language (mismatched 

transcription). The non-native listeners are modeled as a communication channel that is 

“mismatched” to the message, in the sense that the channel (the listeners) uses an alphabet 

that is different from the alphabet of the message (the spoken utterance).  A MAP channel 

decoder (https://github.com/uiuc-sst/PTgen) recovers, from observed mismatched 

transcriptions, a probability distribution over spoken phone strings, which we call a 

probabilistic transcription, and which is usually represented in the form of a phone lattice 

https://github.com/uiuc-sst/PTgen
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(Hasegawa-Johnson et al., 2017). The probabilistic transcription can be used to adapt an 

existing acoustic model. In (Do et al., 2016), the authors further used a well-resourced ASR 

system to generate mismatched transcription, and found that combining mismatched 

transcription generated by both human and ASR leads to lower phone error rate. 

 

3. Use Matched and Mismatched Transcriptions in a Multi-Task Learning Framework 

One disadvantage of the approach in Figure 1 is that performance is reliant on the quality of 

the MAP channel decoder used to convert mismatched transcription to probabilistic 

transcription of the target language. The MAP channel decoder is only trained using limited 

parallel training data, i.e., audio with both matched and mismatched transcription; in the case 

of under-resourced languages, the channel model can be under-trained and information can 

be lost through this process. 

 

Figure 2: Multi-task learning DNN framework using both 

matched and mismatched transcription. 

 

 

Figure 3: Target language (Vietnamese) audio and mismatched transcription (Mandarin 

Pinyin) are used to build the mismatched acoustic model. 
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In this paper, we investigate a method that uses mismatched transcription directly in a 

multi-task learning deep neural network (MTL-DNN) (Do et al., 2017). As shown in Figure 

2, a MTL-DNN acoustic model has two softmax output layers, one for matched (target 

language - Vietnamese) transcription and one for mismatched (source language - Mandarin) 

transcription. Vietnamese frame alignments are generated through forced alignment using the 

initial Vietnamese GMM trained with limited Vietnamese data as in the conventional DNN 

training procedure or from the Vietnamese GMM model after applying PT adaptation (Liu et 

al., 2016). To obtain frame alignment for the mismatched transcription, we use a GMM 

mismatched acoustic model trained using the target language (Vietnamese) audio data with 

source language (Mandarin) mismatched transcription (Figure 3). The mismatched GMM 

acoustic model is then used to do forced alignment on the adaptation set to achieve frame 

alignment for DNN training. After training, the MTL-DNN can model speech perception of 

native listeners and foreign listeners simultaneously. This provides a natural structure to share 

speech perceptual characteristics of source and target language listeners on the target 

language speech. 

Following our recent study (Do et al., 2017), cross-entropy is used as the objective 

function to train the MTL-DNN. Two cross-entropy functions are used for the two softmax 

layers, they are defined as follows.  

 Eq (1) for softmax 1 (matched: target language senones representing target language 

speech, e.g., Vietnamese senones trained on Vietnamese speech): 

𝐽1 = − ∑ ∑ 𝑦̂1𝑖(𝑡) log 𝑦1𝑖(𝑡)

𝑖𝑡

                 (1) 

where 𝑦1𝑖(𝑡) ∈ [0,1] is the value of the ith output of the softmax layer 1 at time t, 𝑦̂1𝑖(𝑡) ∈

{0,1} is the training label at time t given by forced alignment of the matched GMM acoustic 

model, and i is a target language triphone state (senone). 

Eq (2) for softmax 2 (mismatched: source language senones representing target 

language speech, e.g., Mandarin senones trained on Vietnamese speech): 

𝐽2 = − ∑ ∑ 𝑦̂2𝑘(𝑡) log 𝑦2𝑘(𝑡)

𝑘𝑡

                 (2) 

where 𝑦2𝑘(𝑡) ∈ [0,1] is the value of the kth output of the softmax layer 2 at time t, 𝑦̂2𝑘(𝑡) ∈

{0,1} is the training label at time t given by forced alignment of the matched GMM acoustic 

model, and k is a source language triphone state (senone). 

The MTL-DNN is trained to minimize the following regularized multi-task objective 

function. 

𝐽 = (1 − 𝛽)𝑝2𝐽1 + 𝛽𝑝1𝐽2                         (3) 

where p1, p2 are the priors of training data size for matched and mismatched training data, 
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respectively, introduced to deal with data imbalance between two datasets. β is a tunable 

combination weight. When β=0, the MTL-DNN becomes a conventional DNN using only 

one target language softmax layer; when β=1, the MTL-DNN becomes a mismatched ASR, 

trained using audio in one language with transcriptions in another. 

After DNN training, the softmax layer for mismatched transcription is discarded. Only 

the softmax layer for matched transcription (target language) is kept for decoding as in the 

conventional single-task DNN. 

 

4. Experimental setup 

In our experiments, Vietnamese is chosen as the under-resourced language and Mandarin 

speakers are chosen as non-native transcribers. The IARPA BABEL Vietnamese corpus 

provided in the context of the 2013 NIST Open Keyword Search Evaluation is used for our 

experiments. The acoustic data were collected from various real noisy scenes and telephony 

conditions. We randomly select 12, 24 and 48 minutes from the full training set with native 

transcription to simulate limited transcribed training data conditions. Together, 10 hours of 

untranscribed data are also selected for mismatched transcription. A total of 4 Mandarin 

speakers from Upwork (www.upwork.com) were hired, each in charge of 2.5 hours. Those 

Mandarin speakers listened to short Vietnamese speech segments and, for each segment, 

wrote a transcription in Pinyin alphabet that is acoustically closest to what they think they 

heard (Chen et al., 2016).  

To convert mismatched transcription to probabilistic transcription, the MAP channel 

decoder is modeled as a finite memory process using a weighted finite state transducer 

(WFST). The channel decoder accepts phone sequences of the foreign language (Mandarin) 

and produces a Vietnamese phone lattice. The weights on the arcs of the WFST are learned 

using the EM algorithm (Dempster et al., 1977) to maximize the likelihood of the observed 

training instances using, as training data, audio for which both matched and mismatched 

transcriptions exist (three different WFSTs are trained, using 12, 24, or 48 minutes of parallel 

matched/mismatched transcriptions). The USC/ISI Carmel finite-state toolkit1 is used for 

EM training of the WFST model and the OpenFST toolkit (Allauzen et al., 2007) is used for 

all finite-state operations. The Kaldi speech recognition toolkit (Povey et al., 2011) is used to 

build the GMM and DNN acoustic models.  

A feature vector including 23 log-filterbank features and 3 pitch features is extracted 

every 10 milliseconds, using a 25-millisecond analysis window. Acoustic models are GMM 

with speaker adaptive training (SAT) and DNN. During the decoding process, a bigram 

                                                        
1 “Carmel finite-state toolkit,” http://www.isi.edu/licensedsw/carmel/ 
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phonetic language model trained from training data is used. Performance of each system is 

evaluated using phone error rate (PER) on 20 minutes extracted from the 10-hour 

development set specified in the IARPA BABEL Vietnamese corpus. In this study tones are 

not considered; all tonal marks are removed.  

 

5. Experimental Results 

In this section, we present the results of using mismatched transcription by applying 

probabilistic transcription (PT) adaptation and multi-task learning on the initial models. 

Finally, we show the results by combining both PT adaptation and multi-task learning. 

 

5.1. Probabilistic Transcription Adaptation 

We first investigate performance of Vietnamese phone recognition when very limited 

transcribed training data are available. As shown in the first row of Table 1, PER of 

Vietnamese phone recognizer trained with 12 minutes of transcribed data is 83.98% for the 

GMM and 83.76% for the DNN systems. The main reasons for these high PERs are: the 

corpus is noisy conversational telephone speech and the training set is only 12 minutes.  

# Data 

augmentation 

#State w/o PT adaptation 

(initial model) 

w/ PT adaptation 

(adapted model) 

GMM DNN GMM DNN 

1 No 200 83.98 83.76 83.29 82.04 

2 Yes 152 81.34 82.03 80.92 80.81 

3 Yes 201 81.25 81.97 80.75 80.62 

4 Yes 288 81.12 81.79 80.34 80.51 

5 Yes 435 81.37 81.92 80.02 80.12 

6 Yes 658 81.59 82.23 79.88 79.82 

7 Yes 897 82.21 82.49 80.09 79.93 

8 Yes 1450 82.94 83.01 80.56 80.35 

 

Table 1: Phone Error Rate (PER %) for different acoustic models with 12 minutes of 

original Vietnamese matched training data. 

 

To investigate the usefulness of mismatched transcription, two adaptation approaches 

are conducted using PT adaptation method (Section 2): 

 GMM is adapted using MAP adaptation (Liu et al., 2016). 

 DNN is adapted by further training with mismatched transcription (Das and 

Hasegawa-Johnson., 2016). 
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The last two columns of the first row in Table I represent the PER of the two above 

adaptation approaches, they are 83.29% and 82.04% for the adapted GMM and DNN models, 

respectively. We can see that using PT adaptation improves both the GMM and DNN models. 

However this improvement is not large. Our hypothesis is that because the number of triphone 

states in the acoustic model is relatively small, i.e., 200, the model is not improved effectively 

from a large amount of mismatched transcription i.e., 10 hours. However, we cannot easily 

increase the number of triphone states in the acoustic model since only 12 minutes of matched 

transcription are available. To overcome this, the data augmentation approach is considered. 

It is a common strategy adopted to increase the data quantity to avoid overfitting and improve 

the robustness of the model against different test conditions (Jaitly et al., 2013). In this study, 

we increase the training data size using a data augmentation technique called audio speed 

perturbation (Ko et al., 2015). Speed perturbation produces a warped time signal, for example, 

given speech waveform signal x(t), time warping by a factor α will generate signal x(αt). In 

our experiment, we generate 3 copies of the original speech data with α={0.9, 1.0, 1.1}. Now, 

with a 3 times bigger data size, we can vary the model complexity by changing the number 

of triphone states from 152 to 1450. 

Row 2 to row 8 of Table 1 illustrate performance of different models when data 

augmentation is applied. By comparing with row 1, we can see that data augmentation can 

help to improve the performance of Vietnamese phone recognizers significantly. The GMM 

and DNN models without using PT adaptation (initial models) achieve the best performance 

when the number of triphone states is 288. However, both the GMM and DNN using PT 

adaptation obtain the best performance when the number of triphone states reaches 658. This 

proves that our hypothesis is correct: to achieve the best effect of PT adaptation, the 

complexity of the initial acoustic model should be increased even beyond the point at which 

performance of the initial acoustic model is optimal. This can be explained as follows: when 

the number of triphone states increases, the model parameters cannot be well estimated using 

matched data alone, due to lack of training data of some triphones. This makes performance 

of the model drop. However, when a large amount of mismatched transcription is used to 

adapt this initial model, we have enough data to estimate model parameters of all the triphone 

states. One way to quantify the information provided by mismatched crowdsourcing is to 

count the number of distinct triphone labels in the transcription. In 12 minutes of matched 

transcription, there are 2506 distinct triphones. By examining the 1-best path through the 

probabilistic transcription i.e., the MAP estimate of the target language transcription after 

decoding the mismatched transcriptions, we found that there are 738 new triphones 

introduced which do not exist in the original matched training transcription. Figure 4 

illustrates that if we have more matched transcription, the number of new triphones 
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introduced by the mismatched transcription reduces gradually. It proves that with sufficient 

matched training data, it’s possible to find most of the new triphones generated by 

mismatched transcription. Hence, in the case of limited matched transcription, mismatched 

transcription can provide more statistics about triphones that would be otherwise unobserved.  

 

 

Figure 4: Number of new triphones introduced by the mismatched transcription versus 

amounts of matched training transcription. 

 

# Data 

size 

Data 

augmentation 

Without PT 

adaptation 

(initial model) 

With PT 

adaptation 

(adapted model) 

Multi-task learning 

( β=0.41 ) 

GMM 

(ALI1) 

DNN GMM 

(ALI2) 

DNN ALI1 ALI2 

(1) (2) (3) (4) (5) (6) 

1 12 

minutes 

No 83.98 83.76 83.29 82.04 81.36 80.34 

2 Yes 81.59 82.23 79.88 79.82 79.64 78.52 

3 24 

minutes 

No 78.51 78.32 77.94 76.82 75.29 73.74 

4 Yes 76.92 77.22 75.83 75.60 74.38 73.02 

5 48 

minutes 

No 75.05 74.09 74.38 73.28 71.29 70.60 

6 Yes 73.49 72.89 72.77 71.92 70.46 70.04 

 

Table 2: Phone Error Rate (PER %) for different acoustic models with different amounts of 

matched training transcription. 
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Our above experiments have shown that using PT adaptation together with data 

augmentation can significantly improve performance of Vietnamese phone recognition when 

12 minutes of matched transcription are available. In the next experiments, we will 

investigate whether we still gain from mismatched transcription and data augmentation when 

more matched transcription is available. We conduct experiments with 24 and 48 minutes of 

matched transcription training data. As shown in Table 2, using data augmentation with PT 

adaptation achieves a consistent improvement for both the GMM and DNN models even with 

more training data, i.e., 24 and 48 minutes.  

 

5.2 Multi-task Learning 

Figure 5.a shows PER given by the MTL framework (Figure 2) for the case of 12, 24 and 48 

minutes of matched transcription. The combination weight, β is varied from 0 to 0.8. β = 0 is 

the case of conventional initial DNN with only one matched data softmax layer as shown in 

the second column of Table 2. We can see that when β increases, the MTL framework can 

consistently improve performance for all three cases. When β = 0.41, we achieve the best 

performance with 81.36%, 75.29%, 71.29% PER for the case of 12, 24, 48 minutes of 

matched transcription, respectively. These results are better than PER given by the GMM and 

DNN models with and without PT adaptation in Table 1. 

 

  

   (a) without data augmentation     (b) with data augmentation 

Figure 5: Phone error rate versus combination weight β in the multi-task learning 

framework. 

 

 Figure 5.b shows a similar observation when MTL is applied after Vietnamese speech 

data are augmented using speech perturbation. The PERs given by the MTL at β = 0.41, both 

without and with using data augmentation, are presented in column 5 of Table 2. It can be 
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seen that MTL significantly outperforms both the GMM and DNN with and without PT 

adaptation. 

In the experiments whose results are shown in Fig. 5, frame alignment for the matched 

output layer of the DNN is provided by the initial GMM trained with limited matched training 

data (i.e., ALI1, the first column of Table 2). Table 2 also shows that by using PT adaptation 

for the GMM (ALI2), we obtain consistent improvement. Our previous study indicated that 

MTL can be significantly improved by using better frame alignment (Do et al., 2017). In this 

study, we use PT-adapted GMM to generate frame alignment (ALI2) for MTL. This can be 

considered as two level-adaptation where the first adaptation level is for the GMM, to 

generate better alignments, and the second level is for the DNN, to improve acoustic 

modeling. The last column of Table 2 is the PER given by MTL using frame alignment ALI2. 

In this case the combination weight β is simply set to 0.41. It shows that combining MTL 

with PT adaptation results in a consistent improvement over MTL in column 5 and PT 

adaptation in column 4.  

 

6. Conclusion 

In this paper, we presented the results of using mismatched transcription to improve 

performance of speech recognition of an under-resourced language. Experiments conducted 

on the IARPA BABEL Vietnamese corpus showed that mismatched transcription can 

significantly improve performance when matched transcription is limited. We also showed 

that using data augmentation for the matched training data makes mismatched transcription 

adaptation more effective. Finally, multi-task learning, a method using mismatched 

transcription directly, can be effectively combined with PT adaptation in order to build a two-

level adaptation framework.  

 

7. References 

Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and Mohri, M., 2007, OpenFST: A general 

and efficient weighted finite state transducer library, Implementation and Application of 

Automata, pp. 11-23. 

Burget, L., et al., 2010, Multilingual acoustic modeling for speech recognition based on 

subspace Gaussian mixture models, in Proc. IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), pp. 4334-4337. 

Chen, W., Hasegawa-Johnson M., and N. F. Chen, 2016, Mismatched crowdsourcing based 

language perception for under-resourced languages, Procedia Computer Science, vol. 81, 

pp. 23–29. 

Das, A., and Hasegawa-Johnson, M., 2016, An investigation on training deep neural 



152 Van Hai Do, Nancy F. Chen, Boon Pang Lim and Mark Hasegawa-Johnson 

networks using probabilistic transcriptions, in Proc. Annual Conference of the 

International Speech Communication Association (INTERSPEECH), pp. 3858-3862. 

Dempster, A. P., Laird, N. M., and Rubin, D. B., 1977, Maximum likelihood from incomplete 

data via the EM algorithm, Journal of the Royal Statistical Society, Series B 39(1), pp. 1-

38. 

Do, V. H., Chen, N. F., Lim, B. P., and Hasegawa-Johnson, M., 2016, Analysis of 

Mismatched Transcriptions Generated by Humans and Machines for Under-Resourced 

Languages, in Proc. Annual Conference of the International Speech Communication 

Association (INTERSPEECH), pp. 3863-3867. 

Do, V. H., Xiao, X., Chng, E. S., and Li, H., 2013, Context dependent phone mapping for 

LVCSR of under-resourced languages, in Proc. Annual Conference of the International 

Speech Communication Association (INTERSPEECH), pp. 500–504. 

Do, V. H., Xiao, X., Chng, E. S., and Li, H., 2014a, Cross-lingual phone mapping for large 

vocabulary speech recognition of under-resourced languages, the IEICE Transactions on 

Information and Systems, Vol. E97-D, No. 2, pp. 285–295. 

Do, V. H., Xiao, X., Chng, E. S., and Li, H., 2014b, Kernel Density based Acoustic Model 

with Cross-lingual Bottleneck Features for Resource Limited LVCSR, in Proc. Annual 

Conference of the International Speech Communication Association (INTERSPEECH), pp. 

6–10. 

Do, V. H., Chen, N. F., Lim, B. P., and Hasegawa-Johnson, M., 2017, Multi-Task Learning 

using Mismatched Transcription for Under-Resourced Speech Recognition, in Proc. 

Annual Conference of the International Speech Communication Association 

(INTERSPEECH), pp. 734–738. 

Hasegawa-Johnson., M., et al., 2017, ASR for Under Resourced Languages from 

Probabilistic Transcription, IEEE/ACM Transaction on Audio, Speech and Language, vol. 

25, no. 1, pp. 46–59. 

Imseng, D., Bourlard, H., and Garner, P. N., 2012, Using KL divergence and multilingual 

information to improve ASR for under-resourced languages, in Proc. IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4869–4872. 

Jyothi, P., and Hasegawa-Johnson, M., 2015a, Acquiring speech transcriptions using 

mismatched crowdsourcing, in Proc. AAAI, pp. 1263-1269. 

Jyothi, P., and Hasegawa-Johnson, M., 2015b, Transcribing continuous speech using 

mismatched crowdsourcing, in Proc. Annual Conference of the International Speech 

Communication Association (INTERSPEECH), pp. 2774-2778.  

Jaitly, N., and Hinton, G. E., 2013, Vocal tract length perturbation (VTLP) improves speech 

recognition, in Proc. ICML, Workshop on Deep Learning for Audio, Speech, and Language 



Acoustic Modeling for Under-resourced Language using Mismatched Transcriptions 153 

Processing, pp. 625-660. 

Ko, T., Peddinti, V., Povey, D., and Khudanpur, S., 2015, Audio augmentation for speech 

recognition, in Proc. Annual Conference of the International Speech Communication 

Association (INTERSPEECH), pp. 3586-3589.  

Liu, C., et al., 2016, Adapting ASR for under-resourced languages using mismatched 

transcriptions, in Proc. IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), pp. 5840-5844. 

Povey, D., et al., 2011, The Kaldi speech recognition toolkit, in Proc. IEEE Workshop on 

Automatic Speech Recognition and Understanding (ASRU). 

Sainath, T. N., et al., 2012, Exemplar-based processing for speech recognition: An overview, 

IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 98-113. 

Schultz, T., and Waibel, A., 2001, Experiments On Cross Language Acoustic Modeling, in 

Proc. International Conference on Spoken Language Processing (ICSLP), pp. 2721-2724. 

Sim, K. C., and Li, H., 2008, Context Sensitive Probabilistic Phone Mapping Model for 

Cross-lingual Speech Recognition, in Proc. Annual Conference of the International Speech 

Communication Association (INTERSPEECH), pp. 2715-2718. 

Stolcke, A., Grezl, F., Hwang, M., Lei, X., Morgan, N., and Vergyri, D., 2006, Cross-domain 

and cross-language portability of acoustic features estimated by multilayer perceptrons, in 

Proc. IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), pp. 321-324. 

Vu, N. T., Kraus, F., and Schultz, T., 2011, Cross-language bootstrapping based on 

completely unsupervised training using multilingual A-stabil, in Proc. IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5000–5003. 

Xu, H., Do, V. H., Xiao, X., and Chng, E. S., 2015, A Comparative Study of BNF and DNN 

Multilingual Training on Cross-lingual Low-resource Speech Recognition, in Proc.  

Annual Conference of the International Speech Communication Association 

(INTERSPEECH). 


