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Abstract

In this paper an approach to Chinese dialect identifica-
tion based on the sequential information of broad pho-
neme classes is described. The proposed system uses a
set of category-dependent HMMs in parallel to perform
broad phoneme classification, followed by phonotactic
analysis using an SRN-based identifier. Furthermore, the
monosyllabic property of Chinese utterances is exploited
to reduce the complexity of broad phoneme classifica-
tion as well as providing fine input feature patterns. It is
shown that our proposed approach allows the system to
differentiate three Chinese dialects from each other in a
multi-speaker environment.

1 Introduction

Automatic dialect identification (dialect-ID) is a chal-
lenging problem in spoken language system. In essence,
an automatic dialect-ID system takes as input speech
utterances and produces as output the dialect being spo-
ken. Although the ultimate goals and primary applica-
tions of dialect-ID are much similar as those of lan-
guage-ID [1, 2], porting a well-developed language-ID
system to the problem of dialect-ID may series degrade
the identification performance. The main reason for this
is that dialects are usually a group of more closely relat-
ed languages, in the sense that they have common writ-
ten form and/or share much the same structures of pro-
nunciation.

In this paper, we propose to develop a technique
which identifies three major Chinese dialects spoken in
Taiwan, namely, Mandarin, Holo, and Hakka. The basic
strategy applied here is to perform phonetic tokenization
followed by phonotactic analysis [3]. It is aimed to ex-
ploit the phonotactic information embedded in the se-
quential statistics of the phonetic transcription. In the
light of the basic characteristics of Chinese speech, irre-
spective of dialect, an isolated Chinese character is pro-
nounced as a syllable which can be phonetically decom-
posed into an initial/final format and tone. Furthermore,
according to the manners of articulation, each initial and
final sub-syllables can be classified into five broad pho-
neme classes (BPCs): stop (A), fricative (B), affricate
(C), nasal (D), and vowel or diphthong (E). Assume that
each dialect has its own phonotactic structure that gov-
erned the combinations of different BPCs in a dialect,

one can then distinguish one dialect from another by
means of extracting their own phonotactic information.
The architecture configuration of the dialect identifier
used in this letter is shown in Fig. 1. To implement the
dialect-ID system, a set of broad phoneme classifiers
based on hidden Markov models (HMMs) was created
to perform phonetic tokenization, followed by modeling
sequential statistics of phonetic transcription through the
simple recurrent network (SRN).

2 Broad Phoneme Classification

The accuracy of phoneme class partitioning can be aided
by taking advantage of the monosyllabic property of
Chinese utterances. Particularly, we propose to classify
the phone-like units in terms of initial and final sub-
syllables in order to reduce the inventory size of units of
which Chinese dialects is composed. Table 1 lists all the
legitimate BPC patterns observed in the three dialects. It
is clear that any initial sub-syllable consists of one of the
BPCs, whereas a final sub-syllable may contain one or
two BPCs.

The broad phonetic classifier considered here em-
ploys a multi-dialectal BPC-recognizer to tokenize the
spoken utterance into a sequence of BPC symbols. It op-
erates in two phases: training and recognition. Prior to
starting the training and recognition, the speech utter-
ances are converted from their digital waveform repre-
sentations in a stream of feature vectors consisting of ten
mel-cepstral coefficients as well as their first derivatives.
In the training phase, a separate left-to-right HMM [4] is
created for each initial and final sub-syllables in each of
the target dialects. Each HMM has 8§ states and the out-
put probability density function is modeled as a mixture
of 10 underlying Gaussian densities per state. The seg-
mental k-means training procedure is used for this study
to estimate the model parameters. During the recogni-
tion phase, we apply the Viterbi algorithm to find the
optimal state sequence and then calculate the matching
score of comparing the test sub-syllable with each of the
category-dependent models. Finally, the test sub-syllable
is hypothesized as the phonetic pattern that was used to
train the maximum likelihood model.

By tokenizing the speech waveform, the statistics of
the resulting phonetic symbols can then be used to per-
form dialect identification. This is because that dialects



differ significantly from each other with respect to the
frequency of occurence of these phonetic symbols and
the order in which they occur in syllables. To illustrate
this, we show in Fig. 2 the statistical distribution of pho-
netic symbols encountered in three Chinese dialects.

3 Dialect Identification

Using the broad phoneme classifier as a front-end, the
phonotactic information of the underlying dialect can be
extracted by using a SRN where previous outputs of
hidden nodes are delayed and then feedback to the input
layer [S]. The input layer receives data from the broad
phoneme classifier, the hidden layer models the phono-
tactic structure, and the output layer provides the hy-
pothesis of the dialect identified. Taking the benefit of
the monosyllablic property of spoken Chinese, we use
syllable-level BPC pattern as the input to the network.
Furthermore, in order to keep equal-distance of the input
patterns, each syllable was presented to the network as a
fifteen-dimensional binary vector. Table 1 also lists the
associated code of all the legitimate BPC patterns to be
presented in the input layer.

In the SRN, the activation function of hidden neu-
ron j at time n is defined as
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where x(n) is the input neuron i at time n, w;, is the feed-
forward connection strength from input neuron i to hid-
den neuron j, 7 is the recurrent connection strength from
the delayed hidden neuron / to hidden neuron j, and
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where f{ @)=1/ (1+e “) is a sigmoid function. The acti-
vation function of the output neuron k at time » is de-
fined as
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and
0,(n) = ZW"fhf (n).

The network was trained using back-propagation learn-
ing algorithm based on gradient descent optimization in
order to reduce the output error. Assume that the number
of syllables of an utterance is L, then the output error £
is defined as

E=l§m 3 noF,

where T, is the output target function, which is selected
as:
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Then the weights are adjusted by using a modification of
the delta rule:
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where 7)(7) is the learning rate at the #-th iteration. To
implement this, the partial derivative terms are actual
calculated by the chain rule. We iteratively adjust the
weights of the SRN consisting of 15 input neurons, 5
hidden neurons, and 3 output neurons. Finally, the iden-
tification result is determined by the neuron with the lar-
gest output response.

4 Experimental Results

To test the validity of the proposed dialect identification,
extensive computer simulations have been conducted
with various sentential utterances of different character-
istics. Two databases were used here: one for training
the HMMs as well as the SRN, and the other for use in
recognition. The first data set composed of 15 sentential
utterances per dialect was generated by 2 male speakers.
On the other hand, the speech database for use in identi-
fying an unknown dialect consisted of 5 utterances that
did not include the speech segments for training. Each
utterance is, on average, 15 seconds long. The speech
signals were digitized into 16-bit format at a rate of 16
kHz. According to the statistics, there were a total of
4131 initial sub-syllables and 4119 final sub-syllables
providing.

A preliminary experiment was first performed to
examine the validity of the HMM-based broad phoneme
classifier. Compared with phonetically labeled data, cor-
rect and incorrect decisions were recorded. The top-
choice accuracy was first measured to obtain a 81.4%
recognition rate. Table 2 and 3 summarizes the classifi-
cation results for the initial and final sub-syllable. Each
entry corresponding to ith row and jth column represents
the probability of classifying broad phoneme class i as
broad phoneme class j. Therefore, entries along the main
diagonal indicate the ratio of utterances correctly identi-
fied, while off-diagonal entries correspond to incorrect
decisions. The classifier is shown to perform well since
the majority of the decisions are along the main diago-
nal.

Next, computer simulations were conducted to ex-
amine whether Chinese spoken dialects can be accu-
rately identified through neural network mapping. Table
4 and 5 list the experimental results for automatic iden-
tification of three Chinese dialects in content-inside and
content-outside tests. We obtained an average 92.2%
and 83.3% on three Chinese Dialects, respectively. From
the tables we can see that the dialect pair identification
rate is the lowest in the case of Mandarin and Hakka. It
also indicates that the utterances spoken in Holo can be



easily distinguished from that of Mandarin or Hakka.

5 Conclusions

The combined use of a HMM-based broad phoneme
classifier and a SRN-based phonotactic model has been
proposed for dialect identification. The initial/final
structure in Chinese speech is also incorporated to fur-
ther refine the dialect-ID system. Validation of the pro-
posed system was confirmed via simulations on identifi-
cation of three Chinese dialects spoken in Taiwan. It is
worthwhile in future studies to extend the method to-
wards a plurality of other Chinese dialects, as well as
enhancing the robustness to the speaker's diversity.
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Fig. 2 Statistics of broad phoneme classes in initial sub-
syllable.

Table 2 Classification results of initial sub-syllable.

Recognition
A B C D E
A 0.84 0.04 0.04 0.03 0.05
B 0.06 0.84 0.07 0.02 0.02
C 0.06 0.07 0.85 0.01 0.01
D
E

Actual

0.02 0.02 0.01 0.92 0.02
0.06 0.02 0.01 0.01 0.90

Table 3 Classification results of final sub-syllable.

Recognition
EA EB ED E D
EA 0.95 0.01 0.00 0.04 0.01
EB 0.05 0.64 0.07 0.23 0.01
ED 0.03 0.02 0.84 0.10 0.02
E 0.05 0.08 0.11 0.74 0.01
0.02 0.01 0.04 0.00 0.93

Actual

Table 4 Identification results of three Chinese dialects
(content-inside test).

Recognition
Actual
Mandarin Holo Hakka
Mandarin 0.87 0.10 0.03
Holo 0.03 0.97 0.00
Hakka 0.07 0.00 0.93

Table 4 Identification results of three Chinese dialects
(content-outside test).

Recognition
Actual
Mandarin Holo Hakka
Mandarin 0.70 0.10 0.20
Holo 0.00 1.00 0.00
Hakka 0.20 0.00 0.80
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Fig.1 The architecture configuration of the dialect identifier.
Table 1 Syllable-based legitimate BPC patterns in Chinese dialects
Syllable 15 neurons Dialect
Initial Final in input layer Mandarin [Holo [Hakka

A EA 100000000110000 \ \
B EA 010000000110000 \ \
C EA 001000000110000 \ \
D EA 000100000110000 \ \
EA 000000000110000 \ \

A EB 100000000101000 \

B EB 010000000101000 \

C EB 001000000101000 N

D EB 000100000101000 \

EB 000000000101000 \
A ED 100000000100010 \ \ \/
B ED 010000000100010 \ \ \/
C ED 001000000100010 N N N
D ED 000100000100010 \ \ N
ED 000000000100010 \ \ N
A E 100000000100000 \ \ \
B E 010000000100000 N N N
C E 001000000100000 \ \ \
D E 000100000100000 \ \ \
E 000000000100000 \ \ \
A D 100000000000010 \ \
B D 010000000000010 \ \
C D 001000000000010 \ \
D D 000100000000010 \ \
D 000000000000010 \ \
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